3.389 \(\int \csc (e+f x) (b \sec (e+f x))^{3/2} \, dx\)

Optimal. Leaf size=77 \[ -\frac{b^{3/2} \tan ^{-1}\left (\frac{\sqrt{b \sec (e+f x)}}{\sqrt{b}}\right )}{f}-\frac{b^{3/2} \tanh ^{-1}\left (\frac{\sqrt{b \sec (e+f x)}}{\sqrt{b}}\right )}{f}+\frac{2 b \sqrt{b \sec (e+f x)}}{f} \]

[Out]

-((b^(3/2)*ArcTan[Sqrt[b*Sec[e + f*x]]/Sqrt[b]])/f) - (b^(3/2)*ArcTanh[Sqrt[b*Sec[e + f*x]]/Sqrt[b]])/f + (2*b
*Sqrt[b*Sec[e + f*x]])/f

________________________________________________________________________________________

Rubi [A]  time = 0.0533208, antiderivative size = 77, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.316, Rules used = {2622, 321, 329, 212, 206, 203} \[ -\frac{b^{3/2} \tan ^{-1}\left (\frac{\sqrt{b \sec (e+f x)}}{\sqrt{b}}\right )}{f}-\frac{b^{3/2} \tanh ^{-1}\left (\frac{\sqrt{b \sec (e+f x)}}{\sqrt{b}}\right )}{f}+\frac{2 b \sqrt{b \sec (e+f x)}}{f} \]

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]*(b*Sec[e + f*x])^(3/2),x]

[Out]

-((b^(3/2)*ArcTan[Sqrt[b*Sec[e + f*x]]/Sqrt[b]])/f) - (b^(3/2)*ArcTanh[Sqrt[b*Sec[e + f*x]]/Sqrt[b]])/f + (2*b
*Sqrt[b*Sec[e + f*x]])/f

Rule 2622

Int[csc[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Dist[1/(f*a^n), Subst[Int
[x^(m + n - 1)/(-1 + x^2/a^2)^((n + 1)/2), x], x, a*Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n
 + 1)/2] &&  !(IntegerQ[(m + 1)/2] && LtQ[0, m, n])

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \csc (e+f x) (b \sec (e+f x))^{3/2} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{x^{3/2}}{-1+\frac{x^2}{b^2}} \, dx,x,b \sec (e+f x)\right )}{b f}\\ &=\frac{2 b \sqrt{b \sec (e+f x)}}{f}+\frac{b \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \left (-1+\frac{x^2}{b^2}\right )} \, dx,x,b \sec (e+f x)\right )}{f}\\ &=\frac{2 b \sqrt{b \sec (e+f x)}}{f}+\frac{(2 b) \operatorname{Subst}\left (\int \frac{1}{-1+\frac{x^4}{b^2}} \, dx,x,\sqrt{b \sec (e+f x)}\right )}{f}\\ &=\frac{2 b \sqrt{b \sec (e+f x)}}{f}-\frac{b^2 \operatorname{Subst}\left (\int \frac{1}{b-x^2} \, dx,x,\sqrt{b \sec (e+f x)}\right )}{f}-\frac{b^2 \operatorname{Subst}\left (\int \frac{1}{b+x^2} \, dx,x,\sqrt{b \sec (e+f x)}\right )}{f}\\ &=-\frac{b^{3/2} \tan ^{-1}\left (\frac{\sqrt{b \sec (e+f x)}}{\sqrt{b}}\right )}{f}-\frac{b^{3/2} \tanh ^{-1}\left (\frac{\sqrt{b \sec (e+f x)}}{\sqrt{b}}\right )}{f}+\frac{2 b \sqrt{b \sec (e+f x)}}{f}\\ \end{align*}

Mathematica [A]  time = 0.914073, size = 85, normalized size = 1.1 \[ \frac{(b \sec (e+f x))^{3/2} \left (4 \sqrt{\sec (e+f x)}+\log \left (1-\sqrt{\sec (e+f x)}\right )-\log \left (\sqrt{\sec (e+f x)}+1\right )-2 \tan ^{-1}\left (\sqrt{\sec (e+f x)}\right )\right )}{2 f \sec ^{\frac{3}{2}}(e+f x)} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[e + f*x]*(b*Sec[e + f*x])^(3/2),x]

[Out]

((-2*ArcTan[Sqrt[Sec[e + f*x]]] + Log[1 - Sqrt[Sec[e + f*x]]] - Log[1 + Sqrt[Sec[e + f*x]]] + 4*Sqrt[Sec[e + f
*x]])*(b*Sec[e + f*x])^(3/2))/(2*f*Sec[e + f*x]^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.148, size = 235, normalized size = 3.1 \begin{align*}{\frac{ \left ( -1+\cos \left ( fx+e \right ) \right ) ^{3} \left ( \cos \left ( fx+e \right ) \right ) ^{2}}{2\,f \left ( \sin \left ( fx+e \right ) \right ) ^{6}} \left ( 4\,\cos \left ( fx+e \right ) \sqrt{-{\frac{\cos \left ( fx+e \right ) }{ \left ( \cos \left ( fx+e \right ) +1 \right ) ^{2}}}}+\cos \left ( fx+e \right ) \ln \left ( -2\,{\frac{1}{ \left ( \sin \left ( fx+e \right ) \right ) ^{2}} \left ( 2\, \left ( \cos \left ( fx+e \right ) \right ) ^{2}\sqrt{-{\frac{\cos \left ( fx+e \right ) }{ \left ( \cos \left ( fx+e \right ) +1 \right ) ^{2}}}}- \left ( \cos \left ( fx+e \right ) \right ) ^{2}+2\,\cos \left ( fx+e \right ) -2\,\sqrt{-{\frac{\cos \left ( fx+e \right ) }{ \left ( \cos \left ( fx+e \right ) +1 \right ) ^{2}}}}-1 \right ) } \right ) +\cos \left ( fx+e \right ) \arctan \left ({\frac{1}{2}{\frac{1}{\sqrt{-{\frac{\cos \left ( fx+e \right ) }{ \left ( \cos \left ( fx+e \right ) +1 \right ) ^{2}}}}}}} \right ) +4\,\sqrt{-{\frac{\cos \left ( fx+e \right ) }{ \left ( \cos \left ( fx+e \right ) +1 \right ) ^{2}}}} \right ) \left ({\frac{b}{\cos \left ( fx+e \right ) }} \right ) ^{{\frac{3}{2}}} \left ( -{\frac{\cos \left ( fx+e \right ) }{ \left ( \cos \left ( fx+e \right ) +1 \right ) ^{2}}} \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(f*x+e)*(b*sec(f*x+e))^(3/2),x)

[Out]

1/2/f*(-1+cos(f*x+e))^3*(4*cos(f*x+e)*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)+cos(f*x+e)*ln(-2*(2*cos(f*x+e)^2*(-
cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)^2+2*cos(f*x+e)-2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-1)/sin(f*x
+e)^2)+cos(f*x+e)*arctan(1/2/(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2))+4*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2))*(b/
cos(f*x+e))^(3/2)*cos(f*x+e)^2/sin(f*x+e)^6/(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(3/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)*(b*sec(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 3.05017, size = 737, normalized size = 9.57 \begin{align*} \left [\frac{2 \, \sqrt{-b} b \arctan \left (\frac{\sqrt{-b} \sqrt{\frac{b}{\cos \left (f x + e\right )}}{\left (\cos \left (f x + e\right ) + 1\right )}}{2 \, b}\right ) + \sqrt{-b} b \log \left (\frac{b \cos \left (f x + e\right )^{2} + 4 \,{\left (\cos \left (f x + e\right )^{2} - \cos \left (f x + e\right )\right )} \sqrt{-b} \sqrt{\frac{b}{\cos \left (f x + e\right )}} - 6 \, b \cos \left (f x + e\right ) + b}{\cos \left (f x + e\right )^{2} + 2 \, \cos \left (f x + e\right ) + 1}\right ) + 8 \, b \sqrt{\frac{b}{\cos \left (f x + e\right )}}}{4 \, f}, \frac{2 \, b^{\frac{3}{2}} \arctan \left (\frac{\sqrt{\frac{b}{\cos \left (f x + e\right )}}{\left (\cos \left (f x + e\right ) - 1\right )}}{2 \, \sqrt{b}}\right ) + b^{\frac{3}{2}} \log \left (\frac{b \cos \left (f x + e\right )^{2} - 4 \,{\left (\cos \left (f x + e\right )^{2} + \cos \left (f x + e\right )\right )} \sqrt{b} \sqrt{\frac{b}{\cos \left (f x + e\right )}} + 6 \, b \cos \left (f x + e\right ) + b}{\cos \left (f x + e\right )^{2} - 2 \, \cos \left (f x + e\right ) + 1}\right ) + 8 \, b \sqrt{\frac{b}{\cos \left (f x + e\right )}}}{4 \, f}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)*(b*sec(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

[1/4*(2*sqrt(-b)*b*arctan(1/2*sqrt(-b)*sqrt(b/cos(f*x + e))*(cos(f*x + e) + 1)/b) + sqrt(-b)*b*log((b*cos(f*x
+ e)^2 + 4*(cos(f*x + e)^2 - cos(f*x + e))*sqrt(-b)*sqrt(b/cos(f*x + e)) - 6*b*cos(f*x + e) + b)/(cos(f*x + e)
^2 + 2*cos(f*x + e) + 1)) + 8*b*sqrt(b/cos(f*x + e)))/f, 1/4*(2*b^(3/2)*arctan(1/2*sqrt(b/cos(f*x + e))*(cos(f
*x + e) - 1)/sqrt(b)) + b^(3/2)*log((b*cos(f*x + e)^2 - 4*(cos(f*x + e)^2 + cos(f*x + e))*sqrt(b)*sqrt(b/cos(f
*x + e)) + 6*b*cos(f*x + e) + b)/(cos(f*x + e)^2 - 2*cos(f*x + e) + 1)) + 8*b*sqrt(b/cos(f*x + e)))/f]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)*(b*sec(f*x+e))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.36877, size = 107, normalized size = 1.39 \begin{align*} \frac{b^{4}{\left (\frac{\arctan \left (\frac{\sqrt{b \cos \left (f x + e\right )}}{\sqrt{-b}}\right )}{\sqrt{-b} b^{2}} + \frac{\arctan \left (\frac{\sqrt{b \cos \left (f x + e\right )}}{\sqrt{b}}\right )}{b^{\frac{5}{2}}} + \frac{2}{\sqrt{b \cos \left (f x + e\right )} b^{2}}\right )} \mathrm{sgn}\left (\cos \left (f x + e\right )\right )}{f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)*(b*sec(f*x+e))^(3/2),x, algorithm="giac")

[Out]

b^4*(arctan(sqrt(b*cos(f*x + e))/sqrt(-b))/(sqrt(-b)*b^2) + arctan(sqrt(b*cos(f*x + e))/sqrt(b))/b^(5/2) + 2/(
sqrt(b*cos(f*x + e))*b^2))*sgn(cos(f*x + e))/f